KPZ Universality conjectures and KPZ universality class

Clément Erignoux

March 20, 2016

Contents

1 Introduction : Random and ballistic deposition 2

2 Universality classes 2
 2.1 Gaussian universality class : 2
 2.2 KPZ universality class : 3

3 The KPZ equation 3

4 The Asymmetric Simple Exclusion Process (ASEP) 3
 4.1 The asymmetric exclusion process 3
 4.2 Various cases for the asymmetry 4
 4.3 Height function : corner growth model 4

5 Macroscopic limit and fluctuations 4
 5.1 Back to the universality class : fluctuations 5
 5.2 Long time distributions and impact of the initial conditions 6
 5.3 Weak asymmetry and link to the KPZ equation 6

6 Weak and Strong universality conjectures, Rescaling operator, Link with the Wilkinson Edwards universality class 6
1 Introduction : Random and ballistic deposition

So far, all the models studied linked to the KPZ univerality class are in (1 + 1) dimensions (one space & one time dimension)

- Blocks drop at rate one on every site of \mathbb{Z}
- First case : no interactions between the blocks, independant heights $(h_z)_{z \in \mathbb{Z}} : random deposition$
- Second case, the blocks stick to their neighbors, heights are no longer independant

The expected scales for the fluctuation of the depositions models are

<table>
<thead>
<tr>
<th>Random deposition</th>
<th>Ballistic deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height expectation $\sim O(t)$</td>
<td>Height expectation $\sim O(t)$</td>
</tr>
<tr>
<td>Height fluctuations $\sim O(t^{1/2})$</td>
<td>Height fluctuations $\sim O(t^{1/3})$</td>
</tr>
<tr>
<td>No spatial correlation</td>
<td>Spatial correlations $\sim O(t^{2/3})$</td>
</tr>
</tbody>
</table>

The ballistic deposition model has three main characteristics :

KPZ growth characteristics

1. smoothing : the heights tend to homogeneize
2. slope dependant growth : when the slope is large, growth occurs more quickly
3. space time uncorrelated noise : independant blocks fall

2 Universality classes

2.1 Gaussian universality class :

CLT : By understanding normal varibales, the CLT gives intel on any average of random variable.

- By studying one object (BM/Gaussian variable), one can obtain results on a wide variety of models and quantities.
- The other way around, by showing things on discrete models, obtain results on the continuum limit
2.2 KPZ universality class:

Any growth model with these characteristics is expected to be in the KPZ universality class.

→ Main characteristics of the KPZ universality class is fluctuations of order $t^{1/3}$, and spatial correlations of order $t^{2/3}$.

Despite significant progress in the last decades, up to this point, the KPZ universality is not fully understood. (Cf. Universality conjectures, later in the talk)

3 The KPZ equation

General form of the KPZ equation

$$\partial_T h = \nu \partial_X^2 h + \lambda (\partial_X h)^2 + \sigma \dot{W}$$

- 3 parameters ν, λ and σ.
- By space and time rescaling, one can drop two of the parameters.
- KPZ equation → KPZ equations, the "KPZ equation" is in fact a one parameter family $\text{KPZ}(\gamma)$.

1) $\partial_X^2 h$: smoothing out 2) $(\partial_X h)^2$ Slope-dependent growth 3) \dot{W} space-time white noise

It is expected that the KPZ universality involves both the scaling exponents as well as the long-time distributions, within geometry-dependent subclasses. These geometry-dependent subclasses depend on the initial profile. To illustrate that, ASEP.

4 The Asymmetric Simple Exclusion Process (ASEP)

4.1 The asymmetric exclusion process

Description of the model:

- On \mathbb{Z}, each site is either occupied ($\eta_x = 1$) or empty ($\eta_x = 0$)
- fix a (possibly random) initial configuration
- Each particles moves from x to $x + 1$ at rate $1/2 < p < 1$
Each particle moves from x to $x - 1$ at rate $q = 1 - p$.

Exclusion rule: any motion towards an occupied site is cancelled.

4.2 Various cases for the asymmetry

We denote by $\gamma = p - q$ the asymmetry of the system, therefore $p = (1 + \gamma)/2$, and $q = (1 - \gamma)/2$.

1. $\gamma = 0$, Symmetric Simple Exclusion Process (SSEP)
2. $\gamma = 1$, Totally Asymmetric Simple Exclusion Process (TASEP)
3. $0 < \gamma < 1$, Partially Asymmetric Simple Exclusion Process (PASEP)
4. $\gamma = \varepsilon^\beta\gamma$, with $\beta > 0$, Weakly Asymmetric Simple Exclusion Process (WASEP)

For now, we consider the PASEP, the case of the WASEP with $\beta = 1/2$ is linked to the KPZ equation and studied later on.

4.3 Height function: corner growth model

Given an ASEP configuration on \mathbb{Z}, one can build a height function $(h(x))_{x \in \mathbb{Z}}$

$$h(0) = 0 \quad \text{and} \quad h(x + 1) = \begin{cases} h(x) - 1 & \text{if } \eta_{x+1} = 1 \\ h(x) + 1 & \text{if } \eta_{x+1} = 0 \end{cases}.$$

\mapsto If a particle moves from x to $x + 1$ in η, the local minimum of the function h in x becomes a local maximum.

\mapsto If a particle moves from $x + 1$ to x in η, vice-versa.

$$h_\gamma(t, x) = h_\gamma(0, x) + 2(N^-_x(t) - N^+_x(t)),$$

where $N^-_x(t)$ is the total number of particles that came to x from $x - 1$ between the times 0 and t, and $N^+_x(t)$ is the total number of particles that came to x from $x + 1$ between the times 0 and t.

5 Macroscopic limit and fluctuations

Question: what is the behavior of the system at a macroscopic scale?
First solution : given a smooth function \(H \) with bounded domain, study the behavior of
\[
\varepsilon \sum_{x \in \mathbb{Z}} H(\varepsilon x) \eta_x(C_\varepsilon t) \to \int_{\mathbb{R}} H(X) \rho(T, X) dX
\]
as \(\varepsilon \) goes to 0 ? \(\mapsto \) Weak formulation of local equilibrium.
We denote by \(X = x \varepsilon \) the macroscopic space variable and by \(T = C_\varepsilon t \) the macroscopic time.

Second solution : representation by the **height function**. The macroscopic profile of the corner growth model can be written as
\[
\tilde{h}(T, X) = \lim_{\varepsilon \to 0} \varepsilon h_{\gamma}(T, X, \frac{X}{\varepsilon}).
\]

Hydrodynamic limit : the macroscopic profile \(\tilde{h} \) is a weak solution to the inviscid Burgers equation
\[
\partial_T \tilde{h} = \frac{1 - (\partial_X \tilde{h})^2}{2}.
\]

Particular solution with wedge initial condition :
\[
\tilde{h}(T, X) = \frac{T \left(1 + (X/T)^2\right)}{2}.
\]

\(\mapsto \) Faire un dessin

5.1 Back to the universality class : fluctuations

In accord with the KPZ fluctuations scale, one must consider the fluctuation around the hydrodynamic limit
\[
\tilde{f}_0(T, Z) = \lim_{\varepsilon \to 0} \varepsilon^{1/3} \left(h_{\gamma} \left(\frac{T}{\gamma \varepsilon}, \frac{Z}{\varepsilon^{2/3}} \right) - \frac{1}{\varepsilon} \tilde{h}(T, 0) \right).
\]
The compensating mean is indeed \(\tilde{h}(T, 0) \), because the scaling of the spatial fluctuation is less than the time rescaling. The fluctuation field around another macroscopic point \(X \) would be given by
\[
\tilde{f}_X(T, Z) = \lim_{\varepsilon \to 0} \varepsilon^{1/3} \left(h_{\gamma} \left(\frac{T}{\gamma \varepsilon}, \frac{X}{\varepsilon} + \frac{Z}{\varepsilon^{2/3}} \right) - \frac{1}{\varepsilon} \tilde{h}(T, X) \right),
\]
where \(Z \) is on a mesoscopic scale relatively to \(X \).

\(\mapsto \) Complété le dessin
5.2 Long time distributions and impact of the initial conditions

Getting back to the KPZ universality class, and long time distributions: Another strongly presumed universality feature of the universality class, additionally to the scaling exponents, would be the long-time distributions of the fluctuations. The field $f_0(T,0)$ is distributed in long time like the Tracy-Widom distribution.

5.3 Weak asymmetry and link to the KPZ equation

We now consider the case of the weak asymmetry with $\beta = \frac{1}{2}$. We now have

$$p = \frac{1}{2} + \varepsilon^{1/2}\gamma$$ and $$p = \frac{1}{2} - \varepsilon^{1/2}\gamma.$$

Then, the fluctuation field of the weakly asymmetric exclusion process should be solution to the KPZ(γ) equation. (Bertini Giacomin '96)

More precisely this time, one considers the interface position equation

$$\overline{h}^w(T, X) = \lim_{\varepsilon \to 0} \varepsilon \cdot h_T\left(\frac{T}{\gamma \varepsilon^2}, \frac{X}{\varepsilon} \right).$$

Then, $\overline{h}^w(T, X)$ evolves according to the Burgers equation

$$\partial_T \overline{h}^w = \frac{1}{2} \Delta \overline{h}^w + \frac{1 - (\partial_X \overline{h}^w)^2}{2}.$$

In (Bertini Giacomin '96), it is proved that for the weakly asymmetric corner growth model, the fluctuations evolve according to the KPZ equation, i.e. that letting

$$\overline{f}_0(T, Z) = \lim_{\varepsilon \to 0} \varepsilon^{1/2} \left(h_T\left(\frac{T}{\gamma \varepsilon^2}, \frac{Z}{\varepsilon} \right) - \frac{1}{\varepsilon} \overline{h}^w(T, 0) \right),$$

the function $\overline{f}_0(T, Z)$ is solution to the KPZ equation with parameter γ.

6 Weak and Strong universality conjectures, Rescaling operator, Link with the Wilkinson Edwards universality class

Faire un dessin